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We examine the problem of bubble velocity and also the degree of bubble deformation.  The bubble 
volume is assumed to be constant.  

1. Lagrange Equations. We examine the motion of a bubble of variable form in an ideal incompres -  
sible liquid. We assume that the liquid has no free sur faces  and is at res t  at infinity. The bubble motion 
is defined by the general ized coordinates q~, q2, �9 -- and the general ized velocit ies qt', q2" . . . . .  

Among the general ized coordinates qi a re  the Car tes ian  coordinates of the bubble mass  center  and 
the pa ramete r s  defining its form, the number  of which is, general ly  speaking, infinite. It is known that 
the motion of a solid body in an ideal fluid is described by the Lagrange equations [1-3]. We shall use the 
Breakwell  var iat ional  method [1] to show that the change of the general ized coordinates for a deforming 
bubble is also descr ibed by the Lagrange equations. 

It is known [1-3] that the velocity potential �9 and the fluid velocity v depend on qi and q[ and also on 
the space coordinates r e ,  while the fluid kinetic energy T depends on qi and q~ (i = 1,2 . . . .  ). Assume that 
on the t ime interval f rom t o to t 1 the genera l ized coordinates change with t ime as qi (t) and 5qi (t) a re  the 
variat ions of these coordinates ,  which satisfy the conditions 5qi (to) = 5qi (t 1) = 0. Then 

t l  t t  t t  

S ~STdt = S(O-'q-(:-i "6q' + Oq, J dt -- ) 'q,dt (1,1) J k dt \,Oq( Oqi 
to to to 

Here and hereaf te r  summation over  repeating subscr ipts  is assumed.  If we convert  to the Lagran-  
gian coordinates a, which a re  the coordinates  of the part icles  of a fluid of density P at the t ime t0, then we 
can obtain 

tt tt t t  f~ 

f ,~T dt = ! dt S I -~-d3r = S dt S S-~dSa = S aaa Spv=Sv~ dt (1.2) 
to to to t3 

The fluid par t ic le  displacement vec tor  5r  at the t ime t with change of the general ized coordinates qi (t) 
by the magnitude 5qi (t) is connected with the fluid part icle  velocity change 5v by the relat ion 

~ -  5r~ = 5re 

If qi (t) and 6qi (t) a re  given t ime functions, then 6r  is a function of a and t or  in Eulerian coordinates 
a function of r and t. 

Then f rom (1.2) follows 

t~ t t  t~ 

! 6T dt = ld~a {pt~Or~ l~' - -  I p Ov~Yi-6r~ dt} = l pv~6r~ l~ ddr - c ~ ' dt ~ P ~-i-6r~ddr 
to to t~ 

(I .3) 

It can be shown that the relat ion div 6r  =- 0 holds for an incompress ib le  fluid. 
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The equations of i r rotat ional  motion of an ideal fluid have the form 

9 dv[  dt = - -  Vp, v = V(I) 

The volume integrals in (1.3) reduce to surface  integrals 

tx t l  

15Tdt = -- ipffzOr:n: ]:: dS  - -  I dt I (  p - -  pw)br :n~dS  (1.4) 
to t~ 

Here P~o is the fluid p re s su re  at infinity, n a are  the components of the outward normal  vector  to the 
bubble surface.  It can be shown that the integrals over  a sphere  of infinitely large radius vanish [1]. 

Assume that for change of the coordinates qi (t) by 6q i (t) the corresponding normal  displacement of 
the bubble boundary is wi6qi. Then at the boundary the condition is met 

5r~n~ = w~bqi (1.5) 

It follows f rom (1.1), (1.4), (1.5) that 

t ,  

todt dt Oq( Oq i pw i dS 5qi -= 0 

Hence by vir tue of the a rb i t r a r iness  of the variat ions 6qi we obtain the equations 

d OT OT = ~ pw~ dS 
dt aq i" aq~ .J 

2. Equation of Motion of Bubble in Liquid of Small Viscosi ty.  If the Reynolds number R for t r ans -  
lational motion of the bubble exceeds one significantly, the viscous res i s tance  forces  can be included in the 
general ized external forces  

d 0T 0r p~ (2.1) 
dt Oq i" Oq i 

These forces  can be found in the problem of motion of a single bubble f rom the rate of change of the 
kinetic energy of the viscous fluid. In [4] it was shown that in the case of steady bubble motion we can ne- 
glect  the di f ference of the kinet ic  energy of the ideal and v i s cous  fluids.  In the following w e  a s s u m e  that 
this  is  a lso  valid for the mot ion of a bubble of varying shape.  

By vir tue of the squareness  of T relat ive to the general ized velocit ies qi '  it follows from (2.1) that 

d T = P~q( (2.2) 
dt 

On the other  hand, the kinetic energy change can be calculated f rom the Navier-Stokes equations 

d T , ov~ 

Here # is the fluid dynamic viscosi ty,  U is the external mass  force potential. The f i rs t  integral of 
(2.3) is the work of the external forces ,  which goes to increase  the surface  energy 

I , dS aS . (2.4) (pS~,~ -- ~ ) v~n~ dS : -- a ~/- = -- ~ ~ q~ 

Here z is the surface  tension coefficient, S is the bubble surface a rea .  The second integral  of {2.3) is 
the work of the mass  forces  F i per unit t ime 

f Uv~,n:, dS  = I Uwiq( dS  ---- F iq (  (2.5) 

The last volume integral  in (2.3) is the work of the viscous forces  Qi" This integral  for H >> 1 can 
be calculated in the potential flow approximation.  The admissibi l i ty of this approximation is proved in [4] 
for s ta t ionary bubble motion 

OV a 
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C o m p a r i n g  (2.2) and (2.3), with the aid of  (2.4)-(2.6) we find 

P~ 

If we include the s u r f a c e  ene rgy  ~S in the L a g r a n g e  funct ion,  we obtain  the  equat ions  of  mot ion  

d 0L 0L 
---- F ~ -  Q~, L = T --  ~S (2.7) dt Oqi" Oqi 

3. El l ipso id  in L o w - V i s c o s i t y  Liquid,  We a s s u m e  that  the  bubble has the f o r m  of an a x i s y m m e t r i c  
e l l ipsoid  of revolu t ion ,  whose  s u r f a c e  in the C a r t e s i a n  coo rd ina t e  s y s t e m  is d e s c r i b e d  by  the equat ion 

(z~ + y~) / l~ 2 + z~ 1 1~2 = t (l, < l~) 

In the (a ,  fl, r e l l ipso ida l  coo rd ina t e  s y s t e m  

x = k [(t  + : 9  ( i  - -  p~)]v= cos ~, y = k [ ( t  + a 9  ( i  - p g l v ,  s in  q), 

the  s u r f a c e  of  the  e l l ipsoid  c o r r e s p o n d s  to a = a 0. 

A s s u m e  the e l l ipsoid  of  cons t an t  vo lume  moves  in the  d i r ec t ion  of the z axis  wi th  the ve loc i ty  u and 
p e r f o r m s  osc i l l a t ions ,  re ta in ing  e l l ipso ida l  f o rm,  so tha t  

k 3 ao ( t  + a0  ~) = l 3 

Here  k and (~0 a r e  funct ions of  the  t ime  t, l is the  rad ius  of  the  sphe re  of  equivalent  vo lume .  

The  n o r m a l  d i s p l a c e m e n t s  of  the  e l l ipsoid  s u r f a c e  owing to the  osc i l l a t ions  wa  and the  t r a n s l a t i o n a l  
mot ion  Wz equal 

w~= 3(a~q_~2) , wz== ~ \ = t ~ )  / 

The ve loc i ty  potent ia l  @ m u s t  sa t i s fy  the Lap l ace  equat ion A@ = 0 with the boundary  condi t ions  

t oqp 
he: Oct =WzU4: -w~a"  for a ,=~0,  ~--+0 as ~ - - ~  

Fol lowing [2], we can obtain  

(I) ( a, 9 ) = aoB - -  A '7~- -" -3y--'B'~ i 

A (a) = arc ctg cr B (r162 = i - -  aA  (~) 

A = A  (ao), B = B ( ~ 0 ) ,  y = t  + n o  z 

The  liquid k inet ic  e n e r g y  T, su r f a c e  a r e a  S, and ene rgy  d i ss ipa t ion  r a t e  E a r e  defined by the  equat ions  

(3.1) 

4n~ 

A~ - 2 A {j  _ i q 

yB To, ----- 3aB - -  A 
T u  - t - -  yB ' (i -- 3yB) (ay) % 

/ Y ~'% i n [ 0 +  Vg) In] 

1 
i i av2 kY a i v2d~ := u2lQu-~ ~ ' 2 / 3 0 a  4g ~ d S  --  2 

-1  
y~h (A -~ •B) q 

0 u ~ -  aV 3 ( A _ u B )  ~ ' 0 a ~  (l--3yB)~ 

i .1 ~ + i  i i 
3y lays, -7- + ~ -1 9y~<.~ 

(3.2) 

(3.3) 

Here  and h e r e a f t e r  we wr i te  ~ in p lace  of ~0. 
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For  ~" = 0 (3.1) and (3.3) become the equations obtained in [4]. Thus, the equations of motion of the 
ellipsoidal bubble in a low-viscosi ty  liquid in a gravi ty  field with the accelera t ion g have the form 

~u d _  uT~, = g - -  3 7f" Q ,  
dt 

(3.4) 
d t 5 u  2 dT u ~'~ dTa 45 r ds "r 

-d-F (a'T:,) -- 4r~ da 2 da -- -- -~--~ -~- -- 90 --if- Q~ 

4. Stationary Motion of Ellipsoidal Bubble. The steady r ise  of an ellipsoidal bubble is described by 
the equations 

Uo = X/3gP / ~Q=, T~' = 3~ s' / p //tO 2 (4.1) 

The second equation (4.1) defines the Weber number W as a function of the coordinate a0 cha rac -  
ter iz ing the equilibrium bubble shape 

W = 20 lao z / ~ = 6s' (ao) / T~," (a0) (4.2) 

In [3] the dependence of the Weber number  on the ellipsoid semiaxis ratio X = l x / l  z was obtained by 
sat isfying the exact boundary condition Pi - P = K~ (Kis the mean sur face  curvature ,  Pi is the gas p r e s su re  
in the bubble) only at the stagnation point and on the equator. 

In [5] the analogous relat ion for X -< 2 was found numerical ly ,  with the boundary condition for the 
p re s su re  being satisfied in the mean on the ellipsoid surface.  

Figure  l compares  the resul ts  of [4, 5] with the function (4.2), whose curve is shown solid. Devia- 
tions f rom [4] show up at large X. Thus, for X ~ 5 the difference reaches  17%. According to [4] the maxi-  
mal  Weber number  is 3.745 at the point X ~ 6, while according to (4.2) the maximal  value is 3.276 at the 
point X ~ 3.7. 

If we exclude 1 and u f rom (4.1), we obtain the dependence of the bubble r i se  velocity u on l in para-  
met r ic  form 

{ z~g ~'/' w f / ,n -v ,  --  ( 9zv". ~'1, WV, nv~ (4.3) 

Because of the weak dependence of u on W the bubble r i s e  velocity calculated using (4.3) differs very  
little f rom Moore ' s  resul ts .  However, in the region corresponding to 2.5 < X < 4 (4.3) agrees  somewhat 
bet ter  with experiment than do the resul ts  of [4]. 

5. Bubble Oscillations. Let  ~ and ~ be the pa ramete r s  charac ter iz ing  the deformations and ve loc i -  
t ies of the bubble f rom the equilibrium position 

= = = 0 ( 1 + ~ ) ,  u = u 0 ( i + q ) ,  ~ i ,  n ~ l  
Then from (3.4) we obtain the smal l  osci l lat ion equations 

Tu'~" :~- Tun" = - -  3e ( Q,~'~ ~-: Qun), e = wV: ] R 
(5.1) 

T~'"  - -  ~5],W (Tu"~ § 2T~'n) = -- 'a]~s"~ - -  90eQ~" 
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Here R = u o l / v  is the Reynolds number;  p r i m e s  denote der iva t ives  with r e spec t  to a at the point a0; 
overdots  denote der iva t ives  with r e s p e c t  to d imens ionless  t ime  t ' ,  connected with t as follows: 

t = t ' ] / - ~ 1 3 / z  

We seek the solution of (5.1) in the fo rm 

= ~oe xt', ~1 = ~1o ext" 

Then we obtain the equation for finding 

X3T~T~ -/X2e (3Q~T~ I -  90Q~T~) + X (15/2WT~'Z - -  I5/4WTuT~"-~- ~s/.,T~,s') 

+ e (45/~WT~,'(2~,'-- 45/4WT,f'O~ , ~ ~s6/2s"Q~ ) = 0 (5.2) 

The solution of this equation, found in the fo rm of a s e r i e s  in the smal l  p a r a m e t e r  ~, has the f o r m  

L : ico - -  el~, r 2 45s' s'Tu2 = 2-5~-F, F = - ~ l n  r~' 

3Qu d in T= Q~ (5.3) 

Thus,  we obtain the solution of the smal l  osci l la t ion equations 

a = CZO(t -~ ~o e-Mr COS Qt), 

u = uo(i § ~0e Mt cos ~t) (5.4) 

= (~ / 2p/3)'/~ (~0), 31 = -V ~ (~o) 

The osci l la t ion frequency w(a) and decay coefficient  g(a0) va ry  quite smoothly  (Fig. 2). As c~ 0 
~o (X - -1)  the functions w(a0) and ~(a0) approach  asympto t ica l ly  values  equal to V-24 ~ 4.90 and 20 
respec t ive ly .  

Thus the el l ipsoidal  bubble osc i l la t ion  f requency ag rees  in o rde r  of magnitude with the f requency of 
the cap i l l a ry  osci l la t ions  of a res t ing  spher i ca l  bubble of equivalent volume.  The osci l la t ion ampli tude de- 
cays  at t imes  of o r d e r  1/20/2fiJ. We note that for  a highly flattened ell ipsoid the Liquid flow veloci ty  in- 
c r e a s e s  marked ly  at the equator ,  the sepa ra t ion  region broadens  cons iderably ,  and the potential  flow ap- 
proximat ion,  as shown in [4], becomes  invalid. 

The authors  wish to thank V. G. Levich  for  d iscuss ions  of the resu l t s  obtained in this study and also 
D. A. Rzhanitsyn and A. S. Blokhin for  a s s i s t a n c e  in the numer i ca l  calculat ions.  
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